Spatial Angular Compounding Technique for H-Scan Ultrasound Imaging.

نویسندگان

  • Mawia Khairalseed
  • Fangyuan Xiong
  • Jung-Whan Kim
  • Robert F Mattrey
  • Kevin J Parker
  • Kenneth Hoyt
چکیده

H-Scan is a new ultrasound imaging technique that relies on matching a model of pulse-echo formation to the mathematics of a class of Gaussian-weighted Hermite polynomials. This technique may be beneficial in the measurement of relative scatterer sizes and in cancer therapy, particularly for early response to drug treatment. Because current H-scan techniques use focused ultrasound data acquisitions, spatial resolution degrades away from the focal region and inherently affects relative scatterer size estimation. Although the resolution of ultrasound plane wave imaging can be inferior to that of traditional focused ultrasound approaches, the former exhibits a homogeneous spatial resolution throughout the image plane. The purpose of this study was to implement H-scan using plane wave imaging and investigate the impact of spatial angular compounding on H-scan image quality. Parallel convolution filters using two different Gaussian-weighted Hermite polynomials that describe ultrasound scattering events are applied to the radiofrequency data. The H-scan processing is done on each radiofrequency image plane before averaging to get the angular compounded image. The relative strength from each convolution is color-coded to represent relative scatterer size. Given results from a series of phantom materials, H-scan imaging with spatial angular compounding more accurately reflects the true scatterer size caused by reductions in the system point spread function and improved signal-to-noise ratio. Preliminary in vivo H-scan imaging of tumor-bearing animals suggests this modality may be useful for monitoring early response to chemotherapeutic treatment. Overall, H-scan imaging using ultrasound plane waves and spatial angular compounding is a promising approach for visualizing the relative size and distribution of acoustic scattering sources.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvements in elastographic contrast-to-noise ratio using spatial-angular compounding.

Spatial-angular compounding is a new technique developed for improving the signal-to-noise ratio (SNR) in elastography. Under this method, elastograms of a region-of-interest (ROI) are obtained from a spatially weighted average of local strain estimated along different insonification angles. In this article, we investigate the improvements in the strain contrast and contrast-to-noise ratio (CNR...

متن کامل

Spatial-angular compounding for elastography using beam steering on linear array transducers.

Spatial-angular compounding is a new technique that enables the reduction of noise artifacts in ultrasound elastography. Under this method, compounded elastograms are obtained from a spatially weighted average of local strain estimated from radio frequency (rf) echo signals acquired at different insonification angles. In previous work, the acquisition of the rf signals was performed through the...

متن کامل

Freehand Spatial-Angular Compounding of Photoacoustic Images

Photoacoustic (PA) imaging is an emerging medical imaging modality that relies on the absorption of optical energy and the subsequent emission of acoustic waves that are detected with a conventional ultrasound probe. PA images are susceptible to background noise artifacts that reduce the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). We investigated spatial-angular compounding o...

متن کامل

Elevational spatial compounding for enhancing image quality in echocardiography

INTRODUCTION Echocardiography is commonly used in clinical practice for the real-time assessment of cardiac morphology and function. Nevertheless, due to the nature of the data acquisition, cardiac ultrasound images are often corrupted by a range of acoustic artefacts, including acoustic noise, speckle and shadowing. Spatial compounding techniques have long been recognised for their ability to ...

متن کامل

Spatial Compounding of Ultrasonic Diagnostic Images for Rotating Linear Probe with Geometric Parameter Error Compensation

In ultrasonic medical imaging, spatial compounding of images is a technique where ultrasonic beam is steered to examine patient tissues in multiple angles. In the conventional ultrasonic diagnostic imaging, the steering of the ultrasonic beam is achieved electronically using the phased array transducer elements. In this paper, a spatial compounding approach is presented where the ultrasonic pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ultrasound in medicine & biology

دوره 44 1  شماره 

صفحات  -

تاریخ انتشار 2018